The effect of gene conversion on the divergence between duplicated genes.
نویسندگان
چکیده
Nonindependent evolution of duplicated genes is called concerted evolution. In this article, we study the evolutionary process of duplicated regions that involves concerted evolution. The model incorporates mutation and gene conversion: the former increases d, the divergence between two duplicated regions, while the latter decreases d. It is demonstrated that the process consists of three phases. Phase I is the time until d reaches its equilibrium value, d(0). In phase II d fluctuates around d(0), and d increases again in phase III. Our simulation results demonstrate that the length of concerted evolution (i.e., phase II) is highly variable, while the lengths of the other two phases are relatively constant. It is also demonstrated that the length of phase II approximately follows an exponential distribution with mean tau, which is a function of many parameters including gene conversion rate and the length of gene conversion tract. On the basis of these findings, we obtain the probability distribution of the level of divergence between a pair of duplicated regions as a function of time, mutation rate, and tau. Finally, we discuss potential problems in genomic data analysis of duplicated genes when it is based on the molecular clock but concerted evolution is common.
منابع مشابه
Duplication and Gene Conversion in the Drosophila melanogaster Genome
Using the genomic sequences of Drosophila melanogaster subgroup, the pattern of gene duplications was investigated with special attention to interlocus gene conversion. Our fine-scale analysis with careful visual inspections enabled accurate identification of a number of duplicated blocks (genomic regions). The orthologous parts of those duplicated blocks were also identified in the D. simulans...
متن کاملNeofunctionalization of duplicated genes under the pressure of gene conversion.
Neofunctionalization occurs when a neofunctionalized allele is fixed in one of duplicated genes. This is a simple fixation process if duplicated genes accumulate mutations independently. However, the process is very complicated when duplicated genes undergo concerted evolution by gene conversion. Our simulations demonstrate that the process could be described with three distinct stages. First, ...
متن کاملNeutral and Non-Neutral Evolution of Duplicated Genes with Gene Conversion
Gene conversion is one of the major mutational mechanisms involved in the DNA sequence evolution of duplicated genes. It contributes to create unique patters of DNA polymorphism within species and divergence between species. A typical pattern is so-called concerted evolution, in which the divergence between duplicates is maintained low for a long time because of frequent exchanges of DNA fragme...
متن کاملSimulating Concerted Evolution
Teshima and Innan, in [1], describes simulation results for duplicated genes under concerted evolution. Their simulation method evolves a pair of initially identical genes; mutations can accumulate in the two genes—under an infinite sites mutation model—causing divergence between the genes, and gene conversions can occur between the two genes, reducing the divergence again. Their method, howeve...
متن کاملGene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization
Angiosperm genomes differ from those of mammals by extensive and recursive polyploidizations. The resulting gene duplication provides opportunities both for genetic innovation, and for concerted evolution. Though most genes may escape conversion by their homologs, concerted evolution of duplicated genes can last for millions of years or longer after their origin. Indeed, paralogous genes on two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 166 3 شماره
صفحات -
تاریخ انتشار 2004